Какие величины относятся к скалярным
Содержание
Скалярная величина
Скалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только своим значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д. [1]
Примечания
- ↑Понятие скаляра в БСЭ. Проверено 29 апреля 2010.
Wikimedia Foundation . 2010 .
Смотреть что такое «Скалярная величина» в других словарях:
скалярная величина — скаляр Словарь русских синонимов … Словарь синонимов
скалярная величина — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN scalar quantityscalar … Справочник технического переводчика
скалярная величина — skaliarinis dydis statusas T sritis automatika atitikmenys: angl. scalar; scalar quantity vok. skalare Größe, f rus. скалярная величина, f pranc. grandeur scalaire, f … Automatikos terminų žodynas
скалярная величина — skaliarinis dydis statusas T sritis fizika atitikmenys: angl. scalar quantity vok. skalare Größe, f rus. скалярная величина, f pranc. grandeur scalaire, f … Fizikos terminų žodynas
скалярная величина — Syn: скаляр … Тезаурус русской деловой лексики
скалярная проводимость — удельная электрическая проводимость; скалярная проводимость; проводимость Скалярная величина, характеризующая электропроводность среды и являющаяся функцией термодинамических параметров … Политехнический терминологический толковый словарь
колеблющаяся величина — Поочередно возрастающая и убывающая во времени скалярная величина, связанная с описанием и движением механической системы. Примечание В описание механической системы могут входить и силы, действующие в ней. [Сборник рекомендуемых терминов. Выпуск … Справочник технического переводчика
колеблющаяся величина — Поочередно возрастающая и убывающая во времени скалярная величина, связанная с описанием и движением механической системы … Политехнический терминологический толковый словарь
Физическая величина — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Физическая … Википедия
Действие (физическая величина) — У этого термина существуют и другие значения, см. Действие (физика). Действие Размерность L2MT−1 Действие в физике скалярная физическая величина, являющаяс … Википедия
Какие величины относятся к скалярным
В физике существуют скалярные величины (скаляры) и векторные величины (векторы). Хотя, правильнее в последнем случае все-таки говорить векторная величина, часто говорят, например, «вектор скорости».
Упрощенно можно сказать, что скаляр — это просто число.
Векторная величина — это когда есть число, которое имеет еще и направление в пространстве. Вектор в трехмерном пространстве можно представить в виде тройки чисел, каждое из которых есть компонента вектора относительно соответствующей координаты в трехмерной системе координат.
Чтобы совсем запутаться, рекомендую обратиться к Википедии: https://ru.wikipedia.org/wiki/Векторная_величина.
Для тех, кто любит попроще — первый том Фейнмановских лекций по физике.
Для нас важно понять два момента:
1) Примерами скаляров являются: длина, площадь, время, масса, плотность, температура и т.п.
Для наших задач достаточно понимания скаляра, как величины (числа с размерностью) без направления.
2) Под вектором мы будем понимать направленный отрезок. То есть три числа (мы ведь живем в трехмерном пространстве), которые преобразуются по определенным правилам при переходе от одной системы координат к другой.
Попробуем обойтись без математических формул этих правил. Просто представим в нашем трехмерном пространстве направленный отрезок. Некую стрелку, которая, для простоты, неподвижна, неизменна, и имеет направление от одного конца к другому. Или даже представим, что у нас есть определенная операция перемещения в пространстве. У нее есть величина (расстояние перемещения по прямой из начальной точки в конечную) и направление.
И представим систему координат (например, прямоугольную), которая неподвижна относительно нас, и начало отсчета которой совпадает с началом нашего направленного отрезка.
Отлично! Тогда координаты «заостренного» конца нашего «направленного» отрезка с началом в точке (0,0,0) в этой системе координат будут выражаться тремя числами (Ах, Аy, Аz). Будет ли эта тройка чисел вектором?
Будет! Мы же сами задали эти три числа, как координаты вектора .
Теперь мы берем и поворачиваем произвольно нашу систему координат (но пока не сдвигаем начало координат). Тогда в новой системе координат координаты нашего вектора будут (Аx’, Аy’, Аz’). Заметьте, сам наш вектор (направленный отрезок в трехмерном пространстве) не изменился. Как бы мы не вращали систему координат, тройка чисел будет меняться, но вектор (в смысле направленного отрезка) останется на своем месте. Он смотрит в одну и ту же «точку вселенной». О как! И длина его не меняется из-за вращения системы координат.
А теперь вывод. То, что важно для физики!
Если у нас есть три какие-то величины (возможно, мы даже не знаем, связаны ли они между собой), которые изменяются с изменением системы координат, по такому же закону, по которому изменяются компоненты вектора из предыдущего абзаца ((Ах, Аy, Аz) —> (Аx’, Аy’, Аz’)), то мы можем смело утверждать, что эти три величины представляют собой компоненты какого-то вектора.
Формулы можно посмотреть у Фейнмана или еще где-нибудь. Они пока для понимания не столь важны. А важно следующее!
Рассмотрим подробнее физические величины в нашем трехмерном пространстве. Зададим прямоугольную систему координат X , Y , Z . Помним, что у нас есть еще время t.
Теперь посмотрим, что есть что.
Путь вектор или скаляр? Скаляр. Почему?
Перемещение — вектор. У перемещения есть начало и конец, есть величина перемещения и направление перемещения. Таким образом, у него три компоненты — три величины, по одной на каждую из координат.
Далее сами перебираем физические величины и определяем, что есть скаляр, а что вектор!
Два вида физических величин: скалярные величины и векторные величины
«Что-то я не помню такой темы в физике» — первое, что, наверное, пришло вам в голову. Да, вы правы — тема незаметная, но в некоторых учебниках она присутствует. «А нужна она мне для ЕГЭ?» Нужна. Точно нужна. Очень нужна. Постоянно нужна.
Давайте приступим. Надо запомнить, что в физике (школьной) есть два типа физических величин:
- скалярная величина;
- векторная величина.
Векторная величина. Что это такое? Давайте вспомним (а для тех, кто не знал — узнаем), что
вектор — это направленный отрезок .
Стрелка — по-простому. У стрелки (вектора) есть длина (длина стрелки) и направление. Вектор — это нечто , что обладает длиной и направлением .
Примеры векторных величин: сила F ⃗ vec
Направление вектора изображается на картинке. Куда показывает вектор — туда он и направлен. Например, бывает так, что вектор направлен вверх, вниз и т.д. Вектор может быть направлен вдоль какой-то плоскости. Примеры можете видеть на картинках.
Может возникнуть вопрос: а как отличить векторную величину от скалярной ? Или так: как я узнаю, что передо мной вектор, а не скаляр?
Ну, самое простое — это опыт. Решая задачи, читая теоретический материал, вы со временем запомните, какие величины векторные, а какие скалярные. Физических величин не так много, как может показаться.
А способ чуть посложнее — это представить эти величины и решить для себя: могут они иметь направление? Если да — то это вектор, если нет — скаляр.
Например: заряд конденсатора. Если заряд имеет направление, то куда он направлен? Непонятно — поэтому, скорее всего, заряд — это скалярная величина.
Другой пример: длина отрезка. Если эта физическая величина имеет направление, то откуда куда она направлена: от точки 1 до точки 2? Или от точки 2 до точки 1? Трудно выбрать — поэтому, скорее всего, длина отрезка — это скаляр.
Какие из представленных на рисунках величин являются скалярными, а какие — векторными?
Источники:
http://dic.academic.ru/dic.nsf/ruwiki/341793
http://www.sites.google.com/site/fizikaetoprosto2016/12-skalary-i-vektory
http://lampa.io/p/%D0%B4%D0%B2%D0%B0-%D0%B2%D0%B8%D0%B4%D0%B0-%D1%84%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85-%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD:-%D1%81%D0%BA%D0%B0%D0%BB%D1%8F%D1%80%D0%BD%D1%8B%D0%B5-%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B-%D0%B8-%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B5-%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B-000000008cacab102d2a4180c308a110