Что легче алюминий или титан

Алюминий и титан 2020

Алюминий против титана В мире, в котором мы живем, есть множество химических элементов, которые отвечают за состав всех неживых вещей вокруг нас. Большинство из этих элементов являются естественными, то есть они происходят естественным образом, тогда как остальные являются синтетическими; то есть они не происходят естественным образом и искусственно создаются. Периодическая таблица является очень полезным инструментом при изучении элементов. На самом деле это табличное устройство, которое отображает все химические элементы; организация основана на атомном номере, электронных конфигурациях и некоторых конкретных повторяющихся химических свойствах. Два элемента, которые мы собрали из таблицы для сравнения, — алюминий и титан.

Начнем с того, что алюминий является химическим элементом, который имеет символ Al и находится в группе бора. Он имеет атомный 13, т. Е. Имеет 13 протонов. Алюминий, как многие из нас знают, относится к категории металлов и имеет серебристо-белый вид. Он мягкий и пластичный. После кислорода и кремния алюминий является третьим наиболее распространенным элементом в земной коре. Он составляет почти 8% (по массе) твердой поверхности Земли.

С другой стороны, титан также является химическим элементом, но он не является типичным металлом. Он относится к категории переходных металлов и имеет химический символ Ti. Он имеет атомный номер 22 и имеет серебристый вид. Он известен своей высокой прочностью и низкой плотностью. То, что характеризует титан, является тот факт, что он очень устойчив к коррозии в хлоре, морской воде и водной воге.

Сравним два элемента по их физическим свойствам. Алюминий — ковкий металл и легкий. Приблизительно алюминий имеет плотность, которая составляет примерно одну треть от объема стали. Это означает, что при том же объеме стали и алюминия последний имеет одну треть массы. Эта характеристика очень важна для ряда применений алюминия. Фактически, это качество с низким весом является причиной того, что алюминий настолько широко используется при создании самолетов. Его внешний вид варьируется от серебра до тускло-серого. Его фактический внешний вид зависит от шероховатости поверхности. Это означает, что цвет становится ближе к серебру для более гладкой поверхности. Более того, он не является магнитным и даже не легко воспламеняется. Алюминиевые сплавы широко используются из-за их прочности, которые намного превосходят прочность чистого алюминия.

Титан характеризуется высоким отношением прочности к весу. Он довольно пластичный в среде, свободной от кислорода, и имеет низкую плотность. Титан имеет очень высокую температуру плавления, которая даже больше, чем 1650 градусов по Цельсию или 3000 градусов по Фаренгейту. Это делает его очень полезным в качестве тугоплавкого металла. Он имеет довольно низкую тепловую и электрическую проводимость и является парамагнитным. Коммерческие сорта титана имеют прочность на растяжение около 434 МПа, но менее плотные. По сравнению с алюминием титан примерно на 60% плотнее. Однако он имеет двойную прочность алюминия. Оба имеют очень разную прочность на растяжение.

Читать еще:  Статут и статус в чем различие

Резюме различий, выраженных в пунктах

  1. Алюминий представляет собой металл, тогда как титан является переходным металлом
  2. Алюминий имеет атомное число 13 или 13 протонов; Титан имеет атомное число 22 или 22 протонов
  3. Алюминий имеет химический символ Al; Титан имеет химический символ Ti
  4. Алюминий является третьим наиболее распространенным элементом в земной коре, тогда как титан является девятым наиболее распространенным элементом
  5. Алюминий не является магнитным; Титан является парамагнитным
  6. Алюминий дешевле по сравнению с титаном
  7. Характерной особенностью алюминия, который очень важен в его использовании, является его легкий вес и низкая плотность, что на одну треть меньше, чем у стали; характерной особенностью титана, которая важна в его использовании, является его высокая прочность и высокая температура плавления, выше 1650 градусов по Цельсию
  8. Титан имеет двойную прочность алюминия
  9. Титан примерно на 60% плотнее алюминия
  10. Алюминий имеет серебристо-белый внешний вид, который варьируется от серебристого до тускло-серого в зависимости от шероховатости поверхности (обычно больше по сравнению с серебром для более гладких поверхностей), тогда как титан имеет серебряный вид

Карбон,титан или алюминий?

Попробуем взглянуть на выбор велосипедной рамы немного с другой стороны, нежели цена. То есть, рассмотреть материал для ее изготовления, основываясь на физических и прочностных характеристиках материалов.

Для этого обратимся к некоторым терминам и определениям физики твердого тела, а именно теории упругости.

Правильный выбор материала является сложной задачей, однозначное решение которой позволяет оптимизировать технологию изготовления, повысить долговечность конструкции в целом. Сейчас для производства велосипедных рам класса hi- end используются только три конструкционных материала: алюминий, титан и карбон. Первые два – это металлические сплавы, а последний — композиционный материал на основе углеволокна и эпоксидного связующего.

Основной механической характеристикой конструкционного материала является предел прочности. Это отношение значения растягивающей силы непосредственно перед разрывом к наименьшей площади поперечного сечения образца в месте разрыва. Для карбона (на основе углеволокна Т700) эта величина порядка 1500 МПа, для титанового сплава (3 Al/2.5 V) порядка 800 МПа, для алюминия (6061) порядка 60 МПа. В скобках приведены марки, наиболее часто используемые в велосипедной индустрии.

Следующая важная характеристика – предел текучести, напряжение при котором начинает возникать пластическая деформация, другими словами, при разгрузке от которого возникает остаточная деформация заданной величины. Для карбона такие данные не приводятся, для титана порядка 300 МПа, для алюминия порядка 20 МПа.

Ну и в завершение насколько слов о плотности. Чем меньше плотность, тем легче материал. Плотность карбона около 2 г/см3, титана 4,5 г/см3, алюминия 2,7 г/см3.

Из вышесказанного следует, что у каждого материала есть свои сильные и слабые стороны. Однако, для велосипедной специфики нельзя выделить какое то одно определяющее свойство материала. Например, при лучших прочностных/весовых характеристиках, карбон очень хрупкий и боится ударов и царапин. Алюминий легкий, но пластичный и с низкими прочностными свойствами. Титан прочный и упругий, но сравнительно тяжелый.

Истинная картина проясняется, если рассмотреть свойства каждого материала в целом. Тогда бесспорным лидером становится титан. Это обьяснимо.

Причиной разрушения велосипедной рамы являются не чрезмерные нагрузки, а накопление в процессе эксплуатации изделия мелких внутренних повреждений (которые принято называть трещинками или дислокациями), спровоцированное периодическим влиянием внешних сил (напряженного состояния). Определяющей характеристикой металла, так или иначе реагировать на напряженное состояние, является пластичность.

Читать еще:  Какие есть интересные факты

Пластичность металла есть функция его состояния, зависящая от внешних и внутренних факторов, которая выражается в способности твердых тел необратимо менять свою форму без разрушения под действием приложенных сил. Другими словами, существует некоторая максимальная величина нагрузки, при достижении которой происходит разрыв межмолекулярных связей кристаллической решетки металла, что ведет к образованию внутренних дефектов структуры, которые не могут исчезнуть, а могут только накапливаться. Анализ показал, что у большинства конструкционных металлов наиболее типичным является разрушение, которое начинает развиваться задолго до достижения такой максимальной нагрузки. Виной тому циклические нагрузки. При этом пластические деформации и разрушение оказываются связанными настолько тесно, что их можно рассматривать как единый процесс с общей энергией активации.

Установлено, что разрушению материала от усталости (при циклических нагрузках) предшествует накопление локальных микросдвигов и, следовательно, появление пластических деформаций, исчерпание которых приводит к местным разрушениям.

Всё это говорит о том, что пластичные металлы более подвержены накоплению неупругих деформаций (усталости) и следовательно ресурс их значительно ниже.

Физической характеристикой пластичности металла является предел текучести (условный предел текучести). Эта величина определяет усилие при котором в материале появляется пластическая деформация. Чем меньше предел текучести, тем пластичнее материал, а следовательно меньше его ресурс. Предел текучести алюминия в 15 раз меньше, чем у титана!

Ещё одной причиной разрушения конструкционных материалов являются внешние дефекты (царапины). Стойкость материала к царапинам определяется твердостью. Твердость титана по Бриннелю составляет 103 ед., а у алюминия 25 ед., то есть у титана она в 4 раза выше!

У титана, согласно этой характеристике, есть ещё одно большое достоинство – он очень долго сохраняет первоначальный внешний вид и легко его восстанавливает (с помощью дополнительной механической обработки).

Суммируя всё сказанное, получается, что применительно к велосипедной раме титан выглядит материалом практически идеальным. Также это можно сказать про сочетание титана и карбона (углепластика). Однако, дорогой читатель, окончательный выбор всё равно остаётся за Вами.

Титан, карбон или алюминий?

Попробуем взглянуть на выбор велосипедной рамы немного с другой стороны, нежели цена. То есть, рассмотреть материал для ее изготовления, основываясь на физических и прочностных характеристиках материалов.

Для этого обратимся к некоторым терминам и определениям физики твердого тела, а именно теории упругости.

Правильный выбор материала является сложной задачей, однозначное решение которой позволяет оптимизировать технологию изготовления, повысить долговечность конструкции в целом. Сейчас для производства велосипедных рам класса hi — end используются только три конструкционных материала: алюминий, титан и карбон. Первые два – это металлические сплавы, а последний — композиционный материал на основе углеволокна и эпоксидного связующего.

Основной механической характеристикой конструкционного материала является предел прочности. Это отношение значения растягивающей силы непосредственно перед разрывом к наименьшей площади поперечного сечения образца в месте разрыва. Для карбона (на основе углеволокна Т700) эта величина порядка 1500 МПа, для титанового сплава (3 Al /2.5 V ) порядка 800 МПа, для алюминия (6061) порядка 60 МПа. В скобках приведены марки, наиболее часто используемые в велосипедной индустрии.

Читать еще:  Египет открывается для туристов

Следующая важная характеристика – предел текучести , напряжение при котором начинает возникать пластическая деформация, другими словами, при разгрузке от которого возникает остаточная деформация заданной величины. Для карбона такие данные не приводятся, для титана порядка 300 МПа, для алюминия порядка 20 МПа.

Ну и в завершение насколько слов о плотности. Чем меньше плотность, тем легче материал. Плотность карбона около 2 г/см3, титана 4,5 г/см3, алюминия 2,7 г/см3.

Из вышесказанного следует, что у каждого материала есть свои сильные и слабые стороны. Однако, для велосипедной специфики нельзя выделить какое то одно определяющее свойство материала. Например, при лучших прочностных/весовых характеристиках, карбон очень хрупкий и боится ударов и царапин. Алюминий легкий, но пластичный и с низкими прочностными свойствами. Титан прочный и упругий, но сравнительно тяжелый.

Истинная картина проясняется, если рассмотреть свойства каждого материала в целом. Тогда бесспорным лидером становится титан. Это обьяснимо.

Причиной разрушения велосипедной рамы являются не чрезмерные нагрузки, а накопление в процессе эксплуатации изделия мелких внутренних повреждений (которые принято называть трещинками или дислокациями), спровоцированное периодическим влиянием внешних сил (напряженного состояния). Определяющей характеристикой металла, так или иначе реагировать на напряженное состояние, является пластичность .

Пластичность металла есть функция его состояния, зависящая от внешних и внутренних факторов, которая выражается в способности твердых тел необратимо менять свою форму без разрушения под действием приложенных сил. Другими словами, существует некоторая максимальная величина нагрузки, при достижении которой происходит разрыв межмолекулярных связей кристаллической решетки металла, что ведет к образованию внутренних дефектов структуры, которые не могут исчезнуть, а могут только накапливаться. Анализ показал, что у большинства конструкционных металлов наиболее типичным является разрушение, которое начинает развиваться задолго до достижения такой максимальной нагрузки. Виной тому циклические нагрузки. При этом пластические деформации и разрушение оказываются связанными настолько тесно, что их можно рассматривать как единый процесс с общей энергией активации.

Установлено, что разрушению материала от усталости (при циклических нагрузках) предшествует накопление локальных микросдвигов и, следовательно, появление пластических деформаций, исчерпание которых приводит к местным разрушениям.

Всё это говорит о том, что пластичные металлы более подвержены накоплению неупругих деформаций (усталости) и следовательно ресурс их значительно ниже.

Физической характеристикой пластичности металла является предел текучести (условный предел текучести). Эта величина определяет усилие при котором в материале появляется пластическая деформация. Чем меньше предел текучести, тем пластичнее материал, а следовательно меньше его ресурс. Предел текучести алюминия в 15 раз меньше, чем у титана!

Ещё одной причиной разрушения конструкционных материалов являются внешние дефекты (царапины). Стойкость материала к царапинам определяется твердостью . Твердость титана по Бриннелю составляет 103 ед., а у алюминия 25 ед., то есть у титана она в 4 раза выше!

У титана, согласно этой характеристике, есть ещё одно большое достоинство – он очень долго сохраняет первоначальный внешний вид и легко его восстанавливает (с помощью дополнительной механической обработки).

Источники:

http://ru.esdifferent.com/difference-between-aluminum-and-titanium

http://www.velohit.ru/velofaq/955/

http://uabike.com/article/miscellaneous/titan_karbon_ili_aljuminijj.html

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector
×
×
×
×